連續(xù)型隨機(jī)變量2-3

  文件類別:其它

  文件格式:文件格式

  文件大?。?27K

  下載次數(shù):88

  所需積分:2點(diǎn)

  解壓密碼:qg68.cn

  下載地址:[下載地址]

清華大學(xué)卓越生產(chǎn)運(yùn)營總監(jiān)高級(jí)研修班

綜合能力考核表詳細(xì)內(nèi)容

連續(xù)型隨機(jī)變量2-3
§3 連續(xù)型隨機(jī)變量 除了離散型隨機(jī)變量之外,還有非離散型的隨機(jī)變量,這些隨機(jī)變量的取值已不再是有 限個(gè)或可列個(gè)。在這類非離散型隨機(jī)變量中,有一類常見而重要的類型,即所謂連續(xù)型 隨機(jī)變量。粗略地說,連續(xù)型隨機(jī)變量可以在某特定區(qū)間內(nèi)任何一點(diǎn)取值。例如某種樹 的高度;測量的誤差;計(jì)算機(jī)的使用壽命等等都是連續(xù)型隨機(jī)變量。對于連續(xù)型隨機(jī)變 量,不能一一列出它可能取值,因此不能像對離散型隨機(jī)變量那樣用它取各個(gè)可能值的 概率來描述它的概率分布,而是要考慮該隨機(jī)變量在某個(gè)區(qū)間上取值的概率,我們是用 概率密度函數(shù)來研究連續(xù)型隨機(jī)變量的。 1. 概率密度和連續(xù)型隨機(jī)變量定義: 對于隨機(jī)變量[pic],如果存在非負(fù)可積函數(shù)[pic],使得對于任意實(shí)數(shù),[pic] [pic]都有 [pic], 則稱[pic]為連續(xù)型隨機(jī)變量;稱[pic]為[pic]的概率密度函數(shù),簡稱概率密度或密度. 由定義可知,分布密度[pic]具有如下基本性質(zhì):   ?。ǎ保甗pic]; ?。ǎ玻甗pic]. 這兩條性質(zhì)的幾何意義是:概率分布密度曲線不在x軸下方,且該曲線與x軸所圍的圖 形面積為1。性質(zhì)(1)、(2)可以作為判定一個(gè)函數(shù)是否可以作為一個(gè)連續(xù)型隨機(jī)變量 的分布密度的條件。 對于連續(xù)型隨機(jī)變量[pic]可以證明,它在某一點(diǎn)[pic]處取值的概率為零,即 對于任意實(shí)數(shù)[pic],有[pic]. 即研究[pic]在某一點(diǎn)處取值的概率是沒有什么實(shí)際意義的。從而可知,研究[pic]在 某區(qū)間上取值的概率時(shí),該區(qū)間含不含端點(diǎn),不影響概率值。即 (3).對于任意實(shí)數(shù),[pic] [pic]都有 [pic] 1. 設(shè)[pic]是連續(xù)型隨機(jī)變量,已知[pic]的概率密度為 [pic] 其中[pic]為正常數(shù). 試 確定常數(shù)[pic]. 解: 由概率密度函數(shù)性質(zhì),知 [pic] [pic] 二.幾個(gè)常用的一維連續(xù)型隨機(jī)變量: 1. 均勻分布:如果連續(xù)型隨機(jī)變量[pic]的概率密度為     [pic]  [pic] 記作[pic]. [pic] 因此上述定義中的概率密度可以改為 [pic] 其中[pic]為一常數(shù),利用概率密度的性質(zhì),易得 [pic] 2. 指數(shù)分布:   [pic]  則稱[pic]服從指數(shù)分布(參數(shù)為[pic]),記為 [pic] 若[pic]服從參數(shù)為[pic]的指數(shù)分布,則對任意[pic], 有 [pic] 如燈泡、電子元件的壽命,電話的通話時(shí)間等都被認(rèn)為是 服從指數(shù)分布的。 3. 正態(tài)分布:  1. 定義:如果連續(xù)型隨機(jī)變量[pic]的概率密度為      [pic] [pic] 可以證明: [pic] [pic] =1 2. 標(biāo)準(zhǔn)正態(tài)分布:當(dāng)參數(shù)[pic]=0  而[pic] 時(shí),即[pic], 稱[pic]服從標(biāo)準(zhǔn)正態(tài)分布,記 標(biāo)準(zhǔn)正態(tài)分布的概率密度為[pic],則         [pic]    正態(tài)分布是概率統(tǒng)計(jì)中最重要的一種分布。一方面,正態(tài)分布是實(shí)踐中最常見的一 種分布,例如測量的誤差,人的身高、體重,農(nóng)作物的收獲量,大批學(xué)生的考試成 績等等,都近似服從正態(tài)分布。一般說來,若某一數(shù)量指標(biāo)受到很多相互獨(dú)立的隨 機(jī)因素的影響,而每個(gè)因素所起的作用都很微小,則這個(gè)數(shù)量指標(biāo)近似服從正態(tài)分 布。另一方面,正態(tài)分布具有許多良好的性質(zhì),許多分布在一定條件下可以用正態(tài) 分布來近似,因此在概率數(shù)理統(tǒng)計(jì)的理論和實(shí)際應(yīng)用中,正態(tài)分布都有著十分重要 的地位。 3. 性質(zhì): (a) 在直角坐標(biāo)系內(nèi)[pic]的圖形呈鐘形; (b) 在[pic]處得最大值                (c) 關(guān)于直線[pic]對稱;在[pic]處有拐點(diǎn); (d) 如果[pic]固定,改變[pic]的值,則[pic]的圖形沿x軸平行移動(dòng),而不改變其形狀,可 見[pic]形狀完全由[pic]決定,而位置完全由[pic]來決定.當(dāng)[pic]時(shí),曲線以x軸為漸 近線; 當(dāng)[pic]大時(shí),曲線平緩, 當(dāng)[pic]小時(shí),曲線陡峭. [pic]  ?。ǎ矗?biāo)準(zhǔn)正態(tài)分布[pic]的隨機(jī)變量[pic]落在區(qū)間[pic]中的概率: 標(biāo)準(zhǔn)正態(tài)分布密度[pic],記 [pic],當(dāng)[pic], 其函數(shù)值可查本書的附表1, [pic] [pic][pic],   其中    (?。pic]; [pic] [pic]. (ⅱ)[pic]:可直接查本書的附表1,得         ◆[pic]    (ⅲ)[pic]: ◆[pic]; ◆[pic];         ◆[pic] ◆[pic]                [pic];         ◆[pic]. 【例2】設(shè)[pic],則 [pic] [pic] [pic] [pic] (5)一般正態(tài)分布[pic]的隨機(jī)變量[pic]落在區(qū)間[pic]中的概率: 只要搞清楚一般正態(tài)分布與標(biāo)準(zhǔn)正態(tài)分布的關(guān)系,即可利用標(biāo)準(zhǔn)正態(tài)分布求得 一般正態(tài)分布[pic]的隨機(jī)變量[pic]落在區(qū)間[pic]中的概率.具體地, 設(shè)  [pic],則    [pic] 令 [pic] 則有       [pic],    轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)分布,查本書的附表1,就可得這概率. 特別地,     [pic];        [pic];     [pic], 由上面三式可見,服從正態(tài)分布[pic]的隨機(jī)變量[pic]之值基本上落在 區(qū)間[pic]內(nèi), 而幾乎不在區(qū)間[pic]外取值. 【例3】[pic], 求[pic] 解: [pic]   [pic] 三.例題: 【例4】 對以下各題隨機(jī)變量所對應(yīng)的概率分布,試確定常數(shù)a. [pic] [pic] [pic] [pic] 【例5】 [pic] [pic] 【例6】設(shè)隨機(jī)變量X的概率密度為 [pic] [pic] 【例設(shè)連續(xù)型隨機(jī)變量X的分布面數(shù)為 [pic] [pic] 【例7】 則 [pic], [pic] 四.習(xí)題: P.68 ―――?。保玻?,5,15
連續(xù)型隨機(jī)變量2-3
 

[下載聲明]
1.本站的所有資料均為資料作者提供和網(wǎng)友推薦收集整理而來,僅供學(xué)習(xí)和研究交流使用。如有侵犯到您版權(quán)的,請來電指出,本站將立即改正。電話:010-82593357。
2、訪問管理資源網(wǎng)的用戶必須明白,本站對提供下載的學(xué)習(xí)資料等不擁有任何權(quán)利,版權(quán)歸該下載資源的合法擁有者所有。
3、本站保證站內(nèi)提供的所有可下載資源都是按“原樣”提供,本站未做過任何改動(dòng);但本網(wǎng)站不保證本站提供的下載資源的準(zhǔn)確性、安全性和完整性;同時(shí)本網(wǎng)站也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的損失或傷害。
4、未經(jīng)本網(wǎng)站的明確許可,任何人不得大量鏈接本站下載資源;不得復(fù)制或仿造本網(wǎng)站。本網(wǎng)站對其自行開發(fā)的或和他人共同開發(fā)的所有內(nèi)容、技術(shù)手段和服務(wù)擁有全部知識(shí)產(chǎn)權(quán),任何人不得侵害或破壞,也不得擅自使用。

 我要上傳資料,請點(diǎn)我!
 管理工具分類
COPYRIGT @ 2001-2018 HTTP://m.musicmediasoft.com INC. ALL RIGHTS RESERVED. 管理資源網(wǎng) 版權(quán)所有