管理資源網(wǎng)
王海老師
王海 老師
王海老師培訓聯(lián)系微信

王海老師培訓聯(lián)系微信

王海

掃一掃,關注公眾號

王海

王海老師簡介

王海老師                                                  

北京區(qū)塊鏈技術應用協(xié)會的會員和講師、scrum精益敏捷管理顧問講師

國家級信息化專家——國家工信部智能化管理師授課專家

北京理工大學計算機專業(yè)畢業(yè)。


擅長行業(yè)&領域                                                 

行業(yè):金融、銀行、企業(yè)、互聯(lián)網(wǎng)

領域:人工智能(ChatGPT)、區(qū)塊鏈、云計算、大數(shù)據(jù)等領域課題培訓

主講課程                                                   

銀行類:《銀行4.0:一場金融界數(shù)字化革命》、《商業(yè)銀行數(shù)字化生態(tài)圈搭建策略》、《商業(yè)銀行數(shù)字化轉型實操案例分析》、《區(qū)塊鏈技術與央行數(shù)字貨幣在商業(yè)銀行中的應用》、《基于大數(shù)據(jù)的銀行精準營銷應用》、《ChatGPT開啟人工智能新機遇》、《ChatGPT與大數(shù)據(jù)及算法實戰(zhàn)應用》、《人工智能深度學習算法實戰(zhàn)演練》等。

其他行業(yè):《新基建核心技術解析與實施策略》、《中國式現(xiàn)代化引領“新常態(tài)”經(jīng)濟未來》、《互聯(lián)網(wǎng)思維與傳統(tǒng)企業(yè)互聯(lián)網(wǎng)轉型》、《新媒體營銷與品牌推廣——公眾號運營》、《工業(yè)4.0構建中國制造業(yè)未來》、《企業(yè)數(shù)字化搭建與運營管理培訓》、《數(shù)字化端到端運營流程搭建》等。

實戰(zhàn)經(jīng)驗                                                 

王老師先后在出版、通信、互聯(lián)網(wǎng)、咨詢等行業(yè),從事互聯(lián)網(wǎng)運營管理、金融產(chǎn)品管理、項目管理、運營管理等工作15年。曾在搜狐、百度、中國移動等企業(yè)工作。豐富的企業(yè)實際工作經(jīng)驗,熟悉基層業(yè)務和國內(nèi)企業(yè)的管理現(xiàn)狀。培訓課程始終圍繞“變現(xiàn)”為核心,對如何將互聯(lián)網(wǎng)企業(yè)運營管理與傳統(tǒng)企業(yè)實踐相結合,解決企業(yè)的實際問題,有獨到的見解和實踐能力。通過咨詢項目為傳統(tǒng)行業(yè)轉型分享其在營銷、市場、研發(fā)、物流等企業(yè)運營等各方面的心得。擅長將咨詢工作中的經(jīng)驗、案例以互聯(lián)網(wǎng)運營管理、營銷管理、客服管理等形式制作成咨詢方案與課件,在咨詢項目中實際運做案例與活動。

近年培訓與項目記錄摘要:

近兩年各銀行及金融機構服務案例:

2021年,中國銀行:互聯(lián)網(wǎng)金融與區(qū)塊鏈應用培訓,參與人數(shù)40人.

2021年,建設銀行:互聯(lián)網(wǎng)金融應用培訓,參與人數(shù)60人.

2021年,蘇州銀行互聯(lián)網(wǎng)金融與區(qū)塊鏈應用挖掘培訓,參與人數(shù)50人。

2022年,拉卡拉征信大數(shù)據(jù)分析與金融征信培訓,參與人數(shù)50人

2022年,工商銀行:互聯(lián)網(wǎng)金融與區(qū)塊鏈應用培訓,參與人數(shù)60人.

2022年,衢州農(nóng)行互聯(lián)網(wǎng)金融與區(qū)塊鏈應用挖掘培訓,參與人數(shù)40人。

2022年,華夏銀行征信大數(shù)據(jù)分析與金融征信培訓,參與人數(shù)50人

2023年,平安銀行ChatGPT在銀行創(chuàng)新與應用培訓,參與人數(shù)80人。

2023年,工商銀行大數(shù)據(jù)分析與金融征信培訓,參與人數(shù)50人

2023年,中國蘇州銀行ChatGPT應用系列培訓,參與人數(shù)40人。

2023年,北京銀行ChatGPT應用系列培訓,參與人數(shù)50人

近兩年500強企業(yè)及各院校授課案例:

2022年,中國電信浙江分公司:數(shù)字化思維下的品牌營銷,參加人員共200人以上。

2022年,廣汽集團:工業(yè)互聯(lián)網(wǎng)應用,參加人員共100人。

2022年,美的集團:大數(shù)據(jù)營銷,參加人員共300人以上。

2022年,TCL集團:工業(yè)4.0與中國制造2025培訓,參加人員200人。

2022年,中國核能集團:工業(yè)4.0與中國制造2025培訓,授課4期,參加人員共130人以上。

2023年,北京大學總裁班:ChatGPT創(chuàng)新思維,授課4期,參加人員共180人以上。

2023年,武漢大學EMBA總裁班:大數(shù)據(jù)創(chuàng)新營銷,授課4期,參加人員共100人以上。

2023年,杭州移動分公司:ChatGPT與大數(shù)據(jù)培訓,授課6期,參加人員共200人以上。

2023年,浙江大學總裁班:區(qū)塊鏈數(shù)字化貨幣培訓,授課人數(shù)50人。

2023年,中國惠普區(qū)塊鏈技術與財務系統(tǒng)落地培訓咨詢,項目人數(shù)40人

2023年,上海交通大學:ChatGPT技術與金融服務培訓咨詢,授課人數(shù)60人

2023年,清華大學ChatGPT應用培訓總裁班,授課人數(shù)50人

 

參與過多項與 AI、機器學習、大數(shù)據(jù)分析項目:

 拉卡拉征信大數(shù)據(jù)分析與金融征信機器人項目:

考拉征信是拉卡拉旗下獨立的、開放的第三方信用評估及信用管理機構,是當前國內(nèi)同時持有個人征信牌照及企業(yè)征信牌照的征信企業(yè),也是國內(nèi)首個成立專注于大數(shù)據(jù)征信模型研究的專業(yè)實驗室的征信機構??祭餍诺臄?shù)據(jù)來源是多維度的,依托大數(shù)據(jù)互聯(lián)網(wǎng)平臺,數(shù)據(jù)來源既有拉卡拉十年積累起來的便民、電商、金融及近億級個人用戶和百萬線下商戶日常經(jīng)營的相關數(shù)據(jù),同時藍標、拓爾思、梅泰諾和旋極等四家上市公司也同步共享其數(shù)據(jù),此外還有公安、法院、航空、通訊、學歷、學籍、工商等公共部門及其他行業(yè)合作的數(shù)據(jù)。

基于考拉的非結構化大數(shù)據(jù),本項目將重點研究:

個人征信大數(shù)據(jù)建模,企業(yè)征信大數(shù)據(jù)建模,對于個人用戶的反欺詐征信大數(shù)據(jù)建模及處理系統(tǒng)等具體問題。

自動收集、分析并處理多源、異構、非結構化的數(shù)據(jù),充分驗證并研究面向管理決策的非結構化大數(shù)據(jù)挖掘方法技術,面向管理決策的多源異構大數(shù)據(jù)融合方法,以及大數(shù)據(jù)統(tǒng)計推斷與決策方法等重要研究內(nèi)容。利用大數(shù)據(jù)的價值,對征信管理決策提供重要的支撐作用。

春雨醫(yī)生健康大數(shù)據(jù)挖掘人工智能實證平臺項目:

-基于春雨醫(yī)生的大量問診數(shù)據(jù)和全國范圍內(nèi)的病情分布數(shù)據(jù),本項目將應用并驗證大數(shù)據(jù)統(tǒng)計推斷與決策方法;基于此平臺中的海量問診,本項目將應用并驗證面向管理決策的非結構化大數(shù)據(jù)挖掘方法技術,既包括問診文本挖掘技術,也包括問診圖片挖掘技術;在此基礎上,進一步研究并應用如何將春雨內(nèi)外部大數(shù)據(jù)轉化為能夠輔助病情診斷和輔助治療的專業(yè)性知識,為自動化診療提供科學依據(jù),由此研究非結構化大數(shù)據(jù)支持醫(yī)療決策的方法。

36Kr(36 氪) 雙創(chuàng)指數(shù)AI平臺系統(tǒng):

基于此平臺數(shù)據(jù)來源的廣泛性和異構性,本項目將應用并研究面向管理決策的多源異構大數(shù)據(jù)融合方法;在對多體量巨大的數(shù)據(jù)進行分析和推斷中,本項目將應用并驗證大數(shù)據(jù)統(tǒng)計推斷與決策方法;在具體的指數(shù)構建及驗證過程中,本項目將應用并驗證面向管理決策的非結構化大數(shù)據(jù)挖掘方法技術,特別是文本挖掘技術,如文本的結構化表示、文本特征提取和文本分類等。

本項目的重要完成研究并應用基于非結構化大數(shù)據(jù)挖掘技術將這些大數(shù)據(jù)轉化為能夠輔助管理決策的描述中國創(chuàng)新創(chuàng)業(yè)情況的知識,實時監(jiān)控中國創(chuàng)新創(chuàng)業(yè)現(xiàn)狀,為監(jiān)管機構和政府部門的政策制定提供科學依據(jù),防范市場風險,由此研究非結構化大數(shù)據(jù)支持管理決策的一般性方法和模式。

新華金融財經(jīng)智能數(shù)據(jù)標準規(guī)范體系研究項目運用AI 機器人深度學習技術:

項目針對金融財經(jīng)數(shù)據(jù)服務特點建立一系列數(shù)據(jù)規(guī)范標準以及數(shù)據(jù)規(guī)范標準的維護更新體系,完成為用戶提供一個了穩(wěn)定、統(tǒng)一、規(guī)范、方便、高效的大數(shù)據(jù)分析服務平臺

江蘇協(xié)鑫集團電力設備大數(shù)據(jù)智能監(jiān)測與故障分析系統(tǒng)運用:

項目完成電力設備傳感器采集的數(shù)據(jù),構建設備大數(shù)據(jù)管理系統(tǒng)和電力故障分析預測挖掘平臺,項目結合 OpenTSDB 動態(tài)時序數(shù)據(jù)庫技術,實現(xiàn)設備故障數(shù)據(jù)的分類與預測預警模型,實現(xiàn)設備監(jiān)測時間序列數(shù)據(jù)的分析挖掘與故障預警。

中國移動運營商的大數(shù)據(jù)分析系統(tǒng):

項目完成信令數(shù)據(jù)、充值數(shù)據(jù)、CRM、業(yè)務訂閱數(shù)據(jù)等的存儲管理和分析檢索,實現(xiàn)數(shù)據(jù)集成、話單分析、客戶深度標簽分析,網(wǎng)絡優(yōu)化分析以及輿情預警。

授課風格                                                 

專家型講師風格。有相對深厚的知識底蘊和豐富的社會閱歷,以及個人獨特的思考角度。

 講課時邏輯性非常強,旁征博引,談古論今,侃侃而言,毫不費力,化技巧于無形,授課內(nèi)容爐火純青。

王老師的授課就是那種內(nèi)容知識點隨手拈來,隨現(xiàn)場學員狀態(tài)靈活而變。

服務客戶                                                  

銀行業(yè):中國銀行、工商銀行、交通銀行、建設銀行、郵儲銀行、平安銀行、招商銀行、興業(yè)銀行、民生銀行、華夏銀行、蘇州銀行、寧波銀行、各地農(nóng)商行、等

 其他行業(yè):清華大學、北京大學、武漢大學、南京財經(jīng)、中國移動、廣汽集團公司、美的集團:TCL集團、中國核能集團、重慶郵政、EMBA總裁班、春雨醫(yī)生健康、1 號店、德邦物流等

客戶反饋                                                 

學員評價

在工作中,汲取新知識是非常重要的,這次培訓,學到了很多相關知識,非常實用,希望下次公司培訓還能請王老師。

——中國移動

這次大數(shù)據(jù)營銷的培訓,讓我感覺銀行的未來非常有前景,很慶幸自己參加了這次培訓,著實大開眼界!


COPYRIGT @ 2001-2025 HTTP://m.musicmediasoft.com INC. aLL RIGHTS RESERVED. 管理資源網(wǎng) 版權所有