“數(shù)”說營銷--大數(shù)據(jù)營銷實戰(zhàn)培訓(2-4天)

  培訓講師:傅一航

講師背景:
傅一航,華為系大數(shù)據(jù)專家。傅一航,男,計算機軟件與理論碩士研究生(研究方向:數(shù)據(jù)挖掘、搜索引擎)。在華為工作十年,五篇國家專利,在華為工作期間獲得華為數(shù)項獎項,曾在英國、日本、荷蘭等國家做項目,對大數(shù)據(jù)有深入的研究。傅老師專注于大數(shù)據(jù)分析與 詳細>>

傅一航
    課程咨詢電話:

“數(shù)”說營銷--大數(shù)據(jù)營銷實戰(zhàn)培訓(2-4天)詳細內(nèi)容

“數(shù)”說營銷--大數(shù)據(jù)營銷實戰(zhàn)培訓(2-4天)

數(shù)說營銷--大數(shù)據(jù)營銷實戰(zhàn)培訓
【課程目標】
本課程從實際的市場營銷問題出發(fā),構(gòu)建數(shù)據(jù)分析與數(shù)據(jù)挖掘模型,以解決實際的商業(yè)問題。并對大數(shù)據(jù)分析與挖掘技術(shù)進行了全面的介紹,通過從大量的市場營銷數(shù)據(jù)中分析潛在的客戶特征,挖掘客戶行為特點,實現(xiàn)精準營銷,幫助市場營銷團隊深入理解業(yè)務(wù)運作,支持業(yè)務(wù)策略制定以及運營決策。
通過本課程的學習,達到如下目的:
了解大數(shù)據(jù)營銷內(nèi)容,掌握大數(shù)據(jù)在營銷中的應(yīng)用。
了解基本的營銷理論,并學會基于營銷理念來展開大數(shù)據(jù)分析。
熟悉數(shù)據(jù)分析/挖掘的基本過程,掌握常用的數(shù)據(jù)挖掘方法。
熟悉Excel數(shù)據(jù)分析工具,能夠利用Excel和SPSS軟件解決實際的營銷問題(比如定價/影響因素/行為預測/客戶需求/客戶價值/市場細分等)。
【授課時間】
2-4天時間,或者根據(jù)培訓需求選擇組合(每天6個小時)
內(nèi)容
2天
4天
核心數(shù)據(jù)思維


數(shù)據(jù)分析過程


用戶行為分析


數(shù)據(jù)分析思路


影響因素分析


產(chǎn)品銷量預測
√回歸
√時序
客戶行為預測

市場客戶細分

客戶價值評估

產(chǎn)品推薦模型

產(chǎn)品定價策略

【授課對象】
市場營銷部、運營分析部、業(yè)務(wù)支撐等偏業(yè)務(wù)人員。
本課程由淺入深,結(jié)合原理主講分析方法和常規(guī)分析工具的應(yīng)用,不需要太深的數(shù)學知識,但希望掌握數(shù)據(jù)分析的相關(guān)人員。
【學員要求】
每個學員自備一臺便攜機(必須)。
便攜機中事先安裝好Excel 2013版本及以上(前兩天用)。
便攜機中事先安裝好IBM SPSS Statistics v24版本及以上(后兩天用)。
注:講師可以提供試用版本軟件及分析數(shù)據(jù)源。
【授課方式】
理論精講 + 案例演練 + 實際業(yè)務(wù)問題分析 + Excel實踐操作 + SPSS實踐操作
本課程突出數(shù)據(jù)分析的實際應(yīng)用,結(jié)合行業(yè)的典型應(yīng)用特點,圍繞實際的商業(yè)問題,進行大數(shù)據(jù)的分析與挖掘,介紹常用的方法和模型,以及模型適用場景,通過演練操作,以達到提升學員對營銷數(shù)據(jù)的分析以及對數(shù)據(jù)模型的深入理解。
【課程大綱】
數(shù)據(jù)核心理念—數(shù)據(jù)思維篇
問題:什么是數(shù)據(jù)思維?大數(shù)據(jù)決策的底層邏輯以及決策依據(jù)是什么?
數(shù)字化五大技術(shù)戰(zhàn)略:ABCDI戰(zhàn)略
A:人工智能,目的是用機器模擬人類行為
B:區(qū)塊鏈,構(gòu)建不可篡改的分布記賬系統(tǒng)
C:云計算,搭建按需分配的計算資源平臺
D:大數(shù)據(jù),實現(xiàn)智能化的判斷和決策機制
I:物聯(lián)網(wǎng),實現(xiàn)萬物互聯(lián)通信的基礎(chǔ)架構(gòu)
大數(shù)據(jù)的本質(zhì)
數(shù)據(jù),是事物發(fā)展和變化過程中留下的痕跡
大數(shù)據(jù)不在于量大,而在于全(多維性)
業(yè)務(wù)導向還是技術(shù)導向
大數(shù)據(jù)決策的底層邏輯(即四大核心價值)
探索業(yè)務(wù)規(guī)律,按規(guī)律來管理決策
案例:客流規(guī)律與排班及最佳營銷時機
案例:致命交通事故發(fā)生的時間規(guī)律
發(fā)現(xiàn)運營變化,定短板來運營決策
案例:考核周期導致的員工月初懈怠
案例:工序信號異常監(jiān)測設(shè)備故障
理清要素關(guān)系,找影響因素來決策
案例:情緒對于股市漲跌的影響
案例:為何升職反而會增加離職風險?
預測未來趨勢,通過預判進行決策
案例:惠普預測員工離職風險及挽留
案例:保險公司的車險預測與個性化保費定價
大數(shù)據(jù)決策的三個關(guān)鍵環(huán)節(jié)
業(yè)務(wù)數(shù)據(jù)化:將業(yè)務(wù)問題轉(zhuǎn)化為數(shù)據(jù)問題
數(shù)據(jù)信息化:提取數(shù)據(jù)中的業(yè)務(wù)規(guī)律信息
信息策略化:基于規(guī)律形成業(yè)務(wù)應(yīng)對策略
案例:用數(shù)據(jù)來識別喜歡賺“差價”的營業(yè)員
數(shù)據(jù)精準營銷—分析過程篇
問題:大數(shù)據(jù)實現(xiàn)精準營銷的整個過程是什么?要經(jīng)歷哪些步驟?如何構(gòu)建精準營銷的數(shù)據(jù)支撐框架?需要采集哪些數(shù)據(jù)?
數(shù)據(jù)分析的六步曲
明確目標,確定分析思路
收集數(shù)據(jù),尋找分析素材
整理數(shù)據(jù),確保數(shù)據(jù)質(zhì)量
分析數(shù)據(jù),尋找業(yè)務(wù)答案
呈現(xiàn)數(shù)據(jù),解讀業(yè)務(wù)規(guī)律
撰寫報告,形成業(yè)務(wù)策略
精準營銷的業(yè)務(wù)分析框架(6R準則)
尋找正確的客戶
匹配正確的產(chǎn)品
確定合理的價格
通過合適的渠道
采用合適的方式
設(shè)計恰當?shù)男畔?br /> 演練:如何構(gòu)建一個良好的大數(shù)據(jù)精準營銷分析框架
精準營銷項目的整個分析過程
演練:如何用大數(shù)據(jù)來支撐產(chǎn)品精準營銷項目
用戶行為分析—分析方法篇
問題:數(shù)據(jù)分析方法的種類?分析方法的不同應(yīng)用場景?
業(yè)務(wù)分析的三個階段
現(xiàn)狀分析:通過企業(yè)運營指標來發(fā)現(xiàn)規(guī)律及短板
原因分析:查找數(shù)據(jù)相關(guān)性,探尋目標影響因素
預測分析:合理配置資源,預判業(yè)務(wù)未來的趨勢
常用的數(shù)據(jù)分析方法種類
描述性分析法(對比/分組/結(jié)構(gòu)/趨勢/交叉…)
相關(guān)性分析法(相關(guān)/方差/卡方…)
預測性分析法(回歸/時序/決策樹/神經(jīng)網(wǎng)絡(luò)…)
專題性分析法(聚類/關(guān)聯(lián)/RFM模型/…)
統(tǒng)計分析基礎(chǔ)
統(tǒng)計分析兩大關(guān)鍵要素(類別、指標)
統(tǒng)計分析的操作模式(類別指標)
統(tǒng)計分析三個操作步驟(統(tǒng)計、畫圖、解讀)
透視表的三個組成部分
常用的描述性指標
集中程度:均值、中位數(shù)、眾數(shù)
離散程度:極差、方差/標準差、IQR
分布形態(tài):偏度、峰度
基本分析方法及其適用場景
對比分析(查看數(shù)據(jù)差距,發(fā)現(xiàn)事物變化)
演練:尋找用戶的地域分布特征
演練:分析產(chǎn)品受歡迎情況及貢獻大小
演練:用數(shù)據(jù)來探索增量不增收困境的解決方案
分布分析(查看數(shù)據(jù)分布,探索業(yè)務(wù)層次)
演練:銀行用戶的消費水平和消費層次分析
演練:客戶年齡分布/收入分布分析案例:通信運營商的流量套餐劃分合理性的評估
演練:呼叫中心接聽電話效率分析(呼叫中心)
結(jié)構(gòu)分析(查看指標構(gòu)成,評估結(jié)構(gòu)合理性)
案例:增值業(yè)務(wù)收入結(jié)構(gòu)分析(通信)
案例:物流費用成本結(jié)構(gòu)分析(物流)
案例:中移動用戶群動態(tài)結(jié)構(gòu)分析演練:財務(wù)領(lǐng)域的結(jié)構(gòu)瀑布圖、財務(wù)收支的變化瀑布圖
趨勢分析(發(fā)現(xiàn)事物隨時間的變化規(guī)律)
案例:破解零售店銷售規(guī)律
案例:手機銷量的淡旺季分析
案例:微信用戶的活躍時間規(guī)律
演練:發(fā)現(xiàn)客流量的時間規(guī)律
交叉分析(從多個維度的數(shù)據(jù)指標分析)
演練:用戶性別+地域分布分析
演練:不同客戶的產(chǎn)品偏好分析
演練:不同學歷用戶的套餐偏好分析
演練:銀行用戶的違約影響因素分析
用戶行為分析—分析框架篇
問題:如何才能全面/系統(tǒng)地分析而不遺漏?如何分解和細化業(yè)務(wù)問題?
業(yè)務(wù)分析思路和分析框架來源于業(yè)務(wù)模型
常用的業(yè)務(wù)模型
外部環(huán)境分析:PEST
業(yè)務(wù)專題分析:5W2H
競品/競爭分析:SWOT、波特五力營銷市場專題分析:4P/4C等
用戶行為分析(5W2H分析思路和框架)
WHY:原因(用戶需求、產(chǎn)品亮點、競品優(yōu)劣勢)
WHAT:產(chǎn)品(產(chǎn)品喜好、產(chǎn)品貢獻、產(chǎn)品功能、產(chǎn)品結(jié)構(gòu))
WHO:客戶(基本特征、消費能力、產(chǎn)品偏好)
WHEN:時間(淡旺季、活躍時間、重購周期)
WHERE:區(qū)域/渠道(區(qū)域喜好、渠道偏好)
HOW:支付/促銷(支付方式、促銷方式有效性評估等)
HOW MUCH:價格(費用、成本、利潤、收入結(jié)構(gòu)、價格偏好等)
案例討論:結(jié)合公司情況,搭建用戶消費習慣的分析框架(5W2H)數(shù)據(jù)分析策略
影響因素分析—原因分析篇
營銷問題:哪些因素是影響業(yè)務(wù)目標的關(guān)鍵要素?比如,產(chǎn)品在貨架上的位置是否對銷量有影響?價格和廣告開銷是如何影響銷量的?影響風控的關(guān)鍵因素有哪些?如何判斷?
影響因素分析的常見方法
相關(guān)分析(衡量兩數(shù)據(jù)型變量的線性相關(guān)性)
相關(guān)分析簡介相關(guān)分析的應(yīng)用場景
相關(guān)分析的種類
簡單相關(guān)分析
偏相關(guān)分析
距離相關(guān)分析
相關(guān)系數(shù)的三種計算公式
Pearson相關(guān)系數(shù)
Spearman相關(guān)系數(shù)
Kendall相關(guān)系數(shù)
相關(guān)分析的假設(shè)檢驗
相關(guān)分析的四個基本步驟
演練:營銷費用會影響銷售額嗎?影響程度如何量化?
演練:哪些因素與汽車銷量有相關(guān)性
演練:影響用戶消費水平的因素會有哪些
偏相關(guān)分析
偏相關(guān)原理:排除不可控因素后的兩變量的相關(guān)性
偏相關(guān)系數(shù)的計算公式
偏相關(guān)分析的適用場景
距離相關(guān)分析
方差分析(衡量類別變量與數(shù)值變量間的相關(guān)性)
方差分析的應(yīng)用場景
方差分析的三個種類
單因素方差分析
多因素方差分析
協(xié)方差分析
單因素方差分析的原理
方差分析的四個步驟
解讀方差分析結(jié)果的兩個要點
演練:擺放位置與銷量有關(guān)嗎
演練:客戶學歷對消費水平的影響分析
演練:廣告和價格是影響終端銷量的關(guān)鍵因素嗎
演練:營業(yè)員的性別、技能級別對產(chǎn)品銷量有影響嗎
演練:尋找影響產(chǎn)品銷量的關(guān)鍵因素
多因素方差分析原理
多因素方差分析的作用
多因素方差結(jié)果的解讀
演練:廣告形式、地區(qū)對銷量的影響因素分析
協(xié)方差分析原理
協(xié)方差分析的適用場景
演練:排除產(chǎn)品價格,收入對銷量有影響嗎?
列聯(lián)分析/卡方檢驗(兩類別變量的相關(guān)性分析)
交叉表與列聯(lián)表:計數(shù)值與期望值
卡方檢驗的原理
卡方檢驗的幾個計算公式
列聯(lián)表分析的適用場景
案例:套餐類型對客戶流失的影響分析
案例:學歷對業(yè)務(wù)套餐偏好的影響分析
案例:行業(yè)/規(guī)模對風控的影響分析
相關(guān)性分析方法總結(jié)
產(chǎn)品銷量預測—回歸預測篇
營銷問題:如何預測未來的產(chǎn)品銷量/銷售額?如果產(chǎn)品跟隨季節(jié)性變動,該如何預測?
回歸分析簡介和原理
回歸分析的種類
一元回歸/多元回歸
線性回歸/非線性回歸
常用回歸分析方法
散點圖+趨勢線(一元)
線性回歸工具(多元線性)
規(guī)劃求解工具(非線性回歸)
演練:散點圖找營銷費用與銷售額的關(guān)系
線性回歸分析的五個步驟
演練:營銷費用、辦公費用與銷售額的關(guān)系(線性回歸)
線性回歸方程的解讀技巧
定性描述:正相關(guān)/負相關(guān)
定量描述:自變量變化導致因變量的變化程度
回歸預測模型評估
質(zhì)量評估指標:判定系數(shù)R^2
如何選擇最佳回歸模型
演練:如何選擇最佳的回歸預測模型(一元曲線回歸)
帶分類自變量的回歸預測
演練:汽車季度銷量預測
演練:工齡、性別與終端銷量的關(guān)系
演練:如何評估銷售目標與資源最佳配置
回歸分析的基本原理
三個基本概念:總變差、回歸變差、剩余變差
方程的顯著性檢驗:方程可用性
因素的顯著性檢驗:因素可用性
方程擬合優(yōu)度檢驗:質(zhì)量好壞程度
理解標準誤差含義:預測準確性?
回歸模型優(yōu)化措施:尋找最佳回歸擬合線
如何處理預測離群值(剔除離群值)
如何剔除不顯著因素(剔除不顯著因素)
如何進行非線性關(guān)系檢驗(增加非線性自變量)
如何進行相互作用檢驗(增加相互作用自變量)
如何進行多重共線性檢驗(剔除共線性自變量)
演練:模型優(yōu)化演示
好模型都是優(yōu)化出來的
客流預測模型—自定義回歸篇
回歸建模的本質(zhì)
規(guī)劃求解工具簡介
自定義回歸模型
案例:如何對客流量進行建模預測及模型優(yōu)化季節(jié)性預測模型
回歸季節(jié)模型的原理及應(yīng)用場景
加法季節(jié)模型
乘法季節(jié)模型
模型解讀
案例:美國航空旅客里程的季節(jié)性趨勢分析
新產(chǎn)品累計銷量的S曲線
S曲線模型的應(yīng)用場景(最大累計銷量及銷量增長的拐點)
珀爾曲線
龔鉑茲曲線
案例:如何預測產(chǎn)品的銷售增長拐點,以及銷量上限
演練:預測IPad產(chǎn)品的銷量
產(chǎn)品銷量預測—時序預測篇
營銷問題:像利率/CPI/GDP等按時序變化的指標如何預測?當銷量隨季節(jié)周期變動時該如何預測?
回歸預測vs時序預測
因素分解思想
時序預測常用模型
趨勢擬合
季節(jié)擬合
平均序列擬合
評估預測值的準確度指標:MAD、RMSE、MAPE
移動平均(MA)
應(yīng)用場景及原理
移動平均種類
一次移動平均
二次移動平均
加權(quán)移動平均
移動平均比率法
移動平均關(guān)鍵問題
如何選取最優(yōu)參數(shù)N
如何確定最優(yōu)權(quán)重系數(shù)
演練:平板電腦銷量預測及評估
演練:快銷產(chǎn)品季節(jié)銷量預測及評估
指數(shù)平滑(ES)
應(yīng)用場景及原理
最優(yōu)平滑系數(shù)的選取原則
指數(shù)平滑種類
一次指數(shù)平滑
二次指數(shù)平滑(Brown線性、Holt線性、Holt指數(shù)、阻尼線性、阻尼指數(shù))
三次指數(shù)平滑
演練:煤炭產(chǎn)量預測
演練:航空旅客量預測及評估
溫特斯季節(jié)預測模型
適用場景及原理
Holt-Winters加法模型
Holt-Winters乘法模型
演練:汽車銷量預測及評估
平穩(wěn)序列模型(ARIMA)
序列的平穩(wěn)性檢驗
平穩(wěn)序列的擬合模型
AR(p)自回歸模型
MA(q)移動模型
ARMA(p,q)自回歸移動模型
模型的識別與定階
ACF圖/PACF圖
最小信息準則
序列平穩(wěn)化處理
變量變換
k次差分
d階差分
ARIMA(p,d,q)模型
演練:上海證券交易所綜合指數(shù)收益率序列分析
演練:服裝銷售數(shù)據(jù)季節(jié)性趨勢預測分析
平穩(wěn)序列的建模流程
客戶行為預測—分類預測篇
問題:如何評估客戶購買產(chǎn)品的可能性?如何預測客戶的購買行為?如何提取某類客戶的典型特征?如何向客戶精準推薦產(chǎn)品或業(yè)務(wù)?分類模型概述及其應(yīng)用場景
常見分類預測模型
邏輯回歸(LR)
邏輯回歸的適用場景
邏輯回歸的模型原理
邏輯回歸分類的幾何意義
邏輯回歸的種類
二項邏輯回歸
多項邏輯回歸
如何解讀邏輯回歸方程
帶分類自變量的邏輯回歸分析
多項邏輯回歸/多分類邏輯回歸
案例:如何評估用戶是否會購買某產(chǎn)品(二項邏輯回歸)
案例:多品牌選擇模型分析(多項邏輯回歸)
分類決策樹(DT)
問題:如何預測客戶行為?如何識別潛在客戶?
風控:如何識別欠貸者的特征,以及預測欠貸概率?
客戶保有:如何識別流失客戶特征,以及預測客戶流失概率?
決策樹分類簡介
案例:美國零售商(Target)如何預測少女懷孕
演練:識別銀行欠貨風險,提取欠貸者的特征
決策樹分類的幾何意義
構(gòu)建決策樹的三個關(guān)鍵問題
如何選擇最佳屬性來構(gòu)建節(jié)點
如何分裂變量
修剪決策樹
選擇最優(yōu)屬性生長
熵、基尼索引、分類錯誤
屬性劃分增益
如何分裂變量
多元劃分與二元劃分
連續(xù)變量離散化(最優(yōu)分割點)
修剪決策樹
剪枝原則
預剪枝與后剪枝
構(gòu)建決策樹的四個算法
C5.0、CHAID、CART、QUEST
各種算法的比較
如何選擇最優(yōu)分類模型?
案例:商場用戶的典型特征提取
案例:客戶流失預警與客戶挽留
案例:識別拖欠銀行貨款者的特征,避免不良貨款
案例:識別電信詐騙者嘴臉,讓通信更安全
多分類決策樹
案例:不同套餐用戶的典型特征
決策樹模型的保存與應(yīng)用
人工神經(jīng)網(wǎng)絡(luò)(ANN)
神經(jīng)網(wǎng)絡(luò)概述
神經(jīng)網(wǎng)絡(luò)基本原理
神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)
神經(jīng)網(wǎng)絡(luò)分類的幾何意義
神經(jīng)網(wǎng)絡(luò)的建立步驟
神經(jīng)網(wǎng)絡(luò)的關(guān)鍵問題
BP反向傳播網(wǎng)絡(luò)(MLP)
徑向基網(wǎng)絡(luò)(RBF)
案例:評估銀行用戶拖欠貨款的概率
判別分析(DA)
判別分析原理
判別分析種類
Fisher線性判別分析
案例:MBA學生錄取判別分析
案例:上市公司類別評估
最近鄰分類(KNN)
KNN模型的基本原理
KNN分類的幾何意義
K近鄰的關(guān)鍵問題
支持向量機(SVM)
SVM基本原理
線性可分問題:最大邊界超平面
線性不可分問題:特征空間的轉(zhuǎn)換
維災(zāi)難與核函數(shù)
貝葉斯分類(NBN)
貝葉斯分類原理
計算類別屬性的條件概率
估計連續(xù)屬性的條件概率
預測分類概率(計算概率)
拉普拉斯修正
案例:評估銀行用戶拖欠貨款的概率
市場細分模型—聚類模型篇
問題:我們的客戶有幾類?各類特征是什么?如何實現(xiàn)客戶細分,開發(fā)符合細分市場的新產(chǎn)品?如何提取客戶特征,從而對產(chǎn)品進行市場定位?
市場細分的常用方法
有指導細分
無指導細分
聚類分析
如何更好的了解客戶群體和市場細分?
如何識別客戶群體特征?
如何確定客戶要分成多少適當?shù)念悇e?
聚類方法原理介紹
聚類方法作用及其適用場景
聚類分析的種類
K均值聚類
層次聚類
兩步聚類
K均值聚類(快速聚類)
案例:移動三大品牌細分市場合適嗎?
演練:寶潔公司如何選擇新產(chǎn)品試銷區(qū)域?
演練:如何自動評選優(yōu)秀員工?
演練:中國各省份發(fā)達程度分析,讓數(shù)據(jù)自動聚類
層次聚類(系統(tǒng)聚類):發(fā)現(xiàn)多個類別
R型聚類與Q型聚類的區(qū)別
案例:中移動如何實現(xiàn)客戶細分及營銷策略
演練:中國省市經(jīng)濟發(fā)展情況分析(Q型聚類)
演練:裁判評分的標準衡量,避免“黑哨”(R型聚類)
兩步聚類
客戶細分與PCA分析法
PCA主成分分析的原理
PCA分析法的適用場景
演練:利用PCA對汽車客戶群進行細分
演練:如何針對汽車客戶群設(shè)計汽車
客戶價值評估—RFM模型篇
營銷問題:如何評估客戶的價值?不同的價值客戶有何區(qū)別對待?
如何評價客戶生命周期的價值
貼現(xiàn)率與留存率
評估客戶的真實價值
使用雙向表衡量屬性敏感度
變化的邊際利潤
案例:評估營銷行為的合理性
RFM模型(客戶價值評估)
RFM模型,更深入了解你的客戶價值
RFM模型與市場策略
RFM模型與活躍度分析
演練:“雙11”淘寶商家如何選擇價值客戶進行促銷
演練:結(jié)合響應(yīng)模型,宜家IKE實現(xiàn)最大化營銷利潤
案例:重購用戶特征分析
產(chǎn)品推薦算法—推薦模型篇
問題:購買A產(chǎn)品的顧客還常常要購買其他什么產(chǎn)品?應(yīng)該給客戶推薦什么產(chǎn)品最有可能被接受?
從搜索引擎到推薦引擎
常用產(chǎn)品推薦模型及算法
基于流行度的推薦
基于排行榜的推薦,適用于剛注冊的用戶
優(yōu)化思路:分群推薦
基于內(nèi)容的推薦CBR
關(guān)鍵問題:如何計算物品的相似度
優(yōu)缺點
優(yōu)化:Rocchio算法、基于標簽的推薦、基于興趣度的推薦
基于用戶的推薦
關(guān)鍵問題:如何對用戶分類/計算用戶的相似度
算法:按屬性分類、RFM模型、PCA、聚類、按偏好分類、按地理位置
協(xié)同過濾的推薦
基于用戶的協(xié)同過濾
基于物品的協(xié)同過濾
冷啟動的問題
案例:計算用戶相似度、計算物品相似度
基于關(guān)聯(lián)分析的推薦
如何制定套餐,實現(xiàn)交叉/捆綁銷售
案例:啤酒與尿布、颶風與蛋撻關(guān)聯(lián)分析模型原理(Association)
關(guān)聯(lián)規(guī)則的兩個關(guān)鍵參數(shù)
支持度
置信度
關(guān)聯(lián)分析的適用場景
案例:購物籃分析與產(chǎn)品捆綁銷售/布局優(yōu)化
案例:通信產(chǎn)品的交叉銷售與產(chǎn)品推薦
基于分類模型的推薦
其它推薦算法
LFM基于隱語義模型
按社交關(guān)系
基于時間上下文
多推薦引擎的協(xié)同工作
產(chǎn)品定價策略—最優(yōu)定價篇
營銷問題:產(chǎn)品如何實現(xiàn)最優(yōu)定價?套餐價格如何確定?采用哪種定價策略可達到利潤最大化?
常見的定價方法
產(chǎn)品定價的理論依據(jù)
需求曲線與利潤最大化
如何求解最優(yōu)定價
案例:產(chǎn)品最優(yōu)定價求解
如何評估需求曲線
價格彈性
曲線方程(線性、乘冪)
如何做產(chǎn)品組合定價
如何做產(chǎn)品捆綁/套餐定價
最大收益定價(演進規(guī)劃求解)
避免價格反轉(zhuǎn)的套餐定價
案例:電信公司的寬帶、IPTV、移動電話套餐定價
非線性定價原理
要理解支付意愿曲線
支付意愿曲線與需求曲線的異同
案例:雙重收費如何定價(如會費+按次計費)
階梯定價策略
案例:電力公司如何做階梯定價
數(shù)量折扣定價策略
案例:如何通過折扣來實現(xiàn)薄利多銷
定價策略的評估與選擇
案例:零售公司如何選擇最優(yōu)定價策略
航空公司的收益管理
收益管理介紹
如何確定機票預訂限制
如何確定機票超售數(shù)量
如何評估模型的收益
案例:FBN航空公司如何實現(xiàn)收益管理(預訂/超售)
實戰(zhàn)篇(客戶行為預測)
電信業(yè)客戶流失預警與客戶挽留模型
銀行欠貸風險預測模型
結(jié)束:課程總結(jié)與問題答疑。

 

傅一航老師的其它課程

數(shù)據(jù)分析方法及生產(chǎn)運營實際應(yīng)用【課程目標】本課程主要介紹數(shù)據(jù)分析在生產(chǎn)運營過程中的應(yīng)用,適用于制造行業(yè)/保險行業(yè)的數(shù)據(jù)分析人員等。本課程的主要目的是,幫助學員了解大數(shù)據(jù)的本質(zhì),培養(yǎng)學員的數(shù)據(jù)意識和數(shù)據(jù)思維,掌握常用的統(tǒng)計分析方法和工具,以及生產(chǎn)、運營過程中的應(yīng)用,并以概率的方式來進行決策,提升學員的數(shù)據(jù)分析及應(yīng)用能力。本課程具體內(nèi)容包括:數(shù)據(jù)決策邏輯,數(shù)據(jù)決

 講師:傅一航詳情


大數(shù)據(jù)建模大賽輔導實戰(zhàn)【課程目標】本課程主要面向?qū)I(yè)人士的大數(shù)據(jù)建模競賽輔導需求(假定學員已經(jīng)完成Python建模及優(yōu)化--回歸篇/分類篇的學習)。通過本課程的學習,達到如下目的:熟悉大賽常用集成模型掌握模型優(yōu)化常用措施,掌握超參優(yōu)化策略掌握特征工程處理,以及對模型質(zhì)量的影響掌握建模工程管道類(Pipeline,ColumnTransformer)的使用【授

 講師:傅一航詳情


大數(shù)據(jù)時代的精準營銷【課程目標】本課程從實際的市場營銷問題出發(fā),了解大數(shù)據(jù)在市場營銷領(lǐng)域的價值以及應(yīng)用。并對大數(shù)據(jù)分析與挖掘技術(shù)進行了介紹,通過從大量的市場營銷數(shù)據(jù)中分析潛在的客戶特征,挖掘客戶行為特點,實現(xiàn)精準營銷,幫助市場營銷團隊深入理解業(yè)務(wù)運作,支持業(yè)務(wù)策略制定以及營銷決策。通過本課程的學習,達到如下目的:了解大數(shù)據(jù)營銷內(nèi)容,掌握大數(shù)據(jù)在營銷中的應(yīng)用。

 講師:傅一航詳情


大數(shù)據(jù)時代的精準營銷【課程目標】本課程從實際的市場營銷問題出發(fā),了解大數(shù)據(jù)在市場營銷領(lǐng)域的價值以及應(yīng)用。并對大數(shù)據(jù)分析與挖掘技術(shù)進行了介紹,通過從大量的市場營銷數(shù)據(jù)中分析潛在的客戶特征,挖掘客戶行為特點,實現(xiàn)精準營銷,幫助市場營銷團隊深入理解業(yè)務(wù)運作,支持業(yè)務(wù)策略制定以及營銷決策。通過本課程的學習,達到如下目的:了解大數(shù)據(jù)營銷內(nèi)容,掌握大數(shù)據(jù)在營銷中的應(yīng)用。

 講師:傅一航詳情


大數(shù)據(jù)決策思維與商業(yè)模式創(chuàng)新,賦能企業(yè)增長【課程目標】本課程主要幫助大家理解大數(shù)據(jù)的基本概念,著重探索大數(shù)據(jù)的本質(zhì),理解大數(shù)據(jù)的核心價值,以及掌握實現(xiàn)大數(shù)據(jù)價值的三個關(guān)鍵環(huán)節(jié),大數(shù)據(jù)解決業(yè)務(wù)問題的六個步驟,然后聚焦大數(shù)據(jù)的七大核心思維,最后,再用案例說明了大數(shù)據(jù)在各行業(yè)的應(yīng)用場景。大數(shù)據(jù)思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如

 講師:傅一航詳情


大數(shù)據(jù)思維與應(yīng)用創(chuàng)新【課程目標】本課程主要幫助大家理解大數(shù)據(jù)的基本概念,著重探索大數(shù)據(jù)的本質(zhì),理解大數(shù)據(jù)的核心價值,以及掌握實現(xiàn)大數(shù)據(jù)價值的三個關(guān)鍵環(huán)節(jié),大數(shù)據(jù)解決業(yè)務(wù)問題的六個步驟,然后聚焦大數(shù)據(jù)的七大核心思維,最后,再用案例說明了大數(shù)據(jù)在各行業(yè)的應(yīng)用場景。大數(shù)據(jù)思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數(shù)據(jù)基本

 講師:傅一航詳情


大數(shù)據(jù)思維與應(yīng)用創(chuàng)新【課程目標】本課程主要幫助大家理解大數(shù)據(jù)的基本概念,著重探索大數(shù)據(jù)的本質(zhì),理解大數(shù)據(jù)的核心價值,以及掌握實現(xiàn)大數(shù)據(jù)價值的三個關(guān)鍵環(huán)節(jié),大數(shù)據(jù)解決業(yè)務(wù)問題的六個步驟,然后聚焦大數(shù)據(jù)的七大核心思維,最后,再用案例說明了大數(shù)據(jù)在各行業(yè)的應(yīng)用場景。大數(shù)據(jù)思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數(shù)據(jù)基本

 講師:傅一航詳情


大數(shù)據(jù)思維與應(yīng)用創(chuàng)新【課程目標】本課程主要幫助大家理解大數(shù)據(jù)的基本概念,著重探索大數(shù)據(jù)的本質(zhì),理解大數(shù)據(jù)的核心價值,以及掌握實現(xiàn)大數(shù)據(jù)價值的三個關(guān)鍵環(huán)節(jié),大數(shù)據(jù)解決業(yè)務(wù)問題的六個步驟,然后聚焦大數(shù)據(jù)的七大核心思維,最后,再用案例說明了大數(shù)據(jù)在各行業(yè)的應(yīng)用場景。大數(shù)據(jù)思維,讓決策更科學!讓管理更高效!讓營銷更精準!通過本課程的學習,達到如下目的:了解大數(shù)據(jù)基本

 講師:傅一航詳情


大數(shù)據(jù)挖掘工具:SPSSStatistics入門與提高【課程目標】本課程為數(shù)據(jù)分析和挖掘的工具篇,本課程面向數(shù)據(jù)分析部等專門負責數(shù)據(jù)分析與挖掘的人士,專注大數(shù)據(jù)挖掘工具SPSSStatistics的培訓。IBMSPSS工具是面向非專業(yè)人士的高級的分析工具(挖掘工具),它提供大量的分析方法和分析模型,能夠解決更復雜的業(yè)務(wù)問題,比如影響因素分析、客戶行為預測/精

 講師:傅一航詳情


金融行業(yè)風險預測模型實戰(zhàn)【課程目標】本課程專注于金融行業(yè)的風控模型,面向數(shù)據(jù)分析部等專門負責數(shù)據(jù)分析與建模的人士。本課程的主要目的是,培養(yǎng)學員的大數(shù)據(jù)意識和大數(shù)據(jù)思維,掌握常用的數(shù)據(jù)分析方法和數(shù)據(jù)分析模型,并能夠用于對客戶行為作分析和預測,提升學員的數(shù)據(jù)分析綜合能力。通過本課程的學習,達到如下目的:掌握數(shù)據(jù)分析和數(shù)據(jù)建模的基本過程和步驟掌握客戶行為分析中常用

 講師:傅一航詳情


COPYRIGT @ 2001-2018 HTTP://m.musicmediasoft.com INC. ALL RIGHTS RESERVED. 管理資源網(wǎng) 版權(quán)所有